Lesson 2 For Organic Chemistry

Revision Exercise and Extra Knowledge --- For Hybridization Theory and Resonance Concept

1. Please state the hybridization state of all the atoms with a *.

Hint: There are ____ lone pair electrons left on the oxygen atoms and also ____ on the nitrogen atom.

2. Please draw the resonance structures for the following species and answer the questions.

Qu: Which of the carbon atom (s) doesn't carry a positive charge? ____ , ___ and ___

b)

O * * *

Qu : Can the amide bond in red be rotated easily? ____. It is because it bears _____bond character.

. It is called **pyridine**, which is a b_____.

As you should know, resonance structures can be drawn for those c______ systems in neutral state, positively or negatively charged state. This resonance effect can stabilize the compounds in terms of e_____ aspect. Actually, a 'radical' species can also be stabilized by resonance.

c)

Isomerism

Isomers are those compounds with the same molecular formula but different structures in space.

Generally, all atoms in different isomers have the _____ bonding connectivity. Isomersim is a complicated topic; but we only need to focus on the **geometrical isomerism** and **stereoisomerism** only.

1. Geometrical Isomerism

Most importantly, we need to differentiate the two forms of geometrical isomers: ____ and _____.

For example, is called ____ but-2-ene; is called ____ but-2-ene. Also, you should know that the cis isomer can be made into trans isomer by **breaking and reforming** the ____ bonds, or vice versa. (HKAL 2009-2010)

Simply speaking, geometrical isomers have the ____ chemical properties. However, when we compare some physical properties such as melting point/ boiling point, they **may not** be the same.

Illustration 1: Comparison of boiling point

Explain the fact that has a **higher** boiling point than ?

→ Note that is the same as . ____molecular hydrogen bonds are formed. In other words, the chance for the cis form to form ____molecular hydrogen bonds d____.

For the trans-form, there are **extensive** formation of ______molecular hydrogen bonds. Hence, the result follows.

→ How about their difference in **acidity**?

Illustration 2: Comparison of boiling point

Explain the fact that has a **higher** boiling point than ?

The main difference between the cis/trans isomers in this case is their **polarity**. Cis-isomer has a **permanant** dipole moment and hence it is a p_____ molecule. However, the trans form is not polar because there is a **cancellation** of dipole moment. Thus, there are _____ interactions between cis form molecules and more energy is required to separate the stronger interaction to boil it.

→ How about their **melting point**?

HO

Copyright by Kit @ atu.hk.

0

0

C

2

2. <u>Enantiometric Isomerism</u>

It is talking about the relationship between a compound (molecule) and its mirror image. What is called mirror image? Actually, every compounds has its mirror image. It can be drawn by a simple **reflection** as:

. But, if the compound is enantiomeric, the compound should be

<u>imsuper</u> to its mirror image.

Usually, if a tetrahedral atom (sp³ hybridized) has ____ different bonding groups, the molecule formed will likely be enantiomeric. It is because the molecule contains a c____ centre. But you should be careful that when the compound contai more than 1 chiral _____, it may not be a chiral molecule anymore. So, the presence of chiral centre(s) is not an absolute indication for the occurrence of enantiomerism. A compound ____ be chiral if it contains even no chiral centre. However, a simple rule can be stated as :

Enantiomerism occurs when a compound cannot super_____ on its mirror image.

Exercise For Isomerism

a)

Please draw the **isomers** for the following compounds.

b) Please state the relationship (Identical, geometric or enantiomer) between the following pairs of compounds.

They are the ______ after a simple r______. They are called **rotamer**.

as there is **no internal plane of symmetry**.

2. <u>Enantiometric Isomerism</u>

	Regarding the pair of enantiomer, they should have the physical properties except for the
direc	tion of rotation of the plane of polarized light. It is because they have the opposite optical activity .
The a	ability to interact with the plane polarized light is called activity.
\rightarrow	A chiral and non-racemic compound can rotate the plane of polarized light since they have optical
activ	ity. But for a pair of enantiomer, they will have the o optical activity.
\rightarrow	If we mix a 1:1 ratio of enantiomer, the solution formed will show optical activity. This solution is
calle	d racemic mixture, which is an important term in the organic chemistry later.
\rightarrow	The racemate (= mixture) may have different values In terms of boiling point/melting point
from	those of a single enantiomer.
	Just to mention, enantiomers also have the chemical properties, except when interacting with
anoth	ner c compounds. (Like some enzymatic reactions happen in our body)
Impo	ortant Terms For Organic Chemistry
1.	Acid and Base: Organic compounds can be an acid (a donor) or a base (a proton a).
\rightarrow	The reaction between an acid and a base is called A B reaction.
\rightarrow	This concept leads to the comparison of Acidity and Basicity.
2.	Nucleophiles and Electrophiles : Nucleophiles are those compounds which are nucleus loving . They
usual	ly bear lone pair of electrons and charged; Electrophiles are those compounds which are
electron loving. They usually aredeficient.	
\rightarrow	The reaction between a nucleophile and an electrophile is called I reaction.
\rightarrow	This concept leads to the comparison of Nucleophilicity and Electrophilicity.
3.	Intermediate : A s lived and very un species that form along the reaction pathway.
Usually, in HKAL, we should be familiar with the c intermediate.	
\rightarrow	Note that intermediate is not the same as t state.
4.	Stability: It is the term relating to the energy of the species. If the species has a energy, it is said
to be relatively s	
5.	Electron-donating and Electron-withdrawing groups: Electron-donating groups are those group which
can _	electrons; Electron-withdrawing groups are those which can electrons.
\rightarrow	This concept leads to the Inductive effect (through space) and Resonance effect (more powerful).
6.	Reaction mechanism: It is the detailed and step-by-step description of the pathway by which reactants are
conv	erted to (Frequently asked)